Researchers reach quantum networking milestone in real-world environment
  • Quantum equipment in the Alice laboratory, where the photon source and the first node in the team’s network are stored. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy


A team from the U.S. Department of Energy’s Oak Ridge National Laboratory, Stanford University and Purdue University developed and demonstrated a novel, fully functional quantum local area network, or QLAN, to enable real-time adjustments to information shared with geographically isolated systems at ORNL using entangled photons passing through optical fiber.

This network exemplifies how experts might routinely connect quantum computers and sensors at a practical scale, thereby realizing the full potential of these next-generation technologies on the path toward the highly anticipated quantum internet. The team’s results, which are published in PRX Quantum, mark the culmination of years of related research.

Local area networks that connect classical computing devices are nothing new, and QLANs have been successfully tested in tabletop studies. Quantum key distribution has been the most common example of quantum communications in the field thus far, but this procedure is limited because it only establishes security, not entanglement, between sites.

“We’re trying to lay a foundation upon which we can build a quantum internet by understanding critical functions, such as entanglement distribution bandwidth,” said Nicholas Peters, the Quantum Information Science section head at ORNL. “Our goal is to develop the fundamental tools and building blocks we need to demonstrate quantum networking applications so that they can be deployed in real networks to realize quantum advantages.”