Population-specific diversity within fungi species could enable improved drug discovery
Jul-09-2021

Scientists at Oak Ridge National Laboratory and the University of Wisconsin–Madison have discovered that genetically distinct populations within the same species of fungi can produce unique mixes of secondary metabolites, which are organic compounds with applications in medicine, industry and agriculture. The finding could open new avenues for drug discovery and provide a deeper understanding of fungal evolution.

In nature, secondary metabolites help fungi interact with their environments. To people, they can be beneficial or harmful. Metabolites such as penicillin, for example, help fungi and humans alike fight off bacteria. Conversely, the metabolite aflatoxin may defend some fungi from attacking insects but can cause liver cancer and developmental issues in humans.

Fungal secondary metabolites have been widely studied because of their significance to human health. But most research has overlooked how genetic differences between populations, or groups within the same species living in a particular location, might influence secondary metabolite production.  

“Before this study, most people just looked at one strain of a fungi species, one genome, and they determined that the metabolites present should be the same among all strains,” said Tomás Rush, a postdoctoral researcher in ORNL’s Biosciences Division who co-authored the research. “This study demonstrates that’s not necessarily true.”